skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Adams, Tyler J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing demand for optical technologies with dynamic spectral control has driven interest in chromogenic materials, particularly for applications in tunable infrared metasurfaces. Phase-change materials such as vanadium dioxide and germanium–antimony–tellurium, for instance, have been widely used in the infrared regime. However, their reliance on thermal and electrical tuning introduces challenges such as high power consumption, limited emissivity tuning, and slow modulation speeds. Photochromic materials may offer an alternative approach to dynamic infrared metasurfaces, potentially overcoming these limitations through rapid, light-induced changes in their optical properties. This manuscript explores the potential of thiazolothiazole-embedded polymers, known for their reversible photochromic transitions and strong infrared absorption changes, for use in tunable infrared metasurfaces. The material exhibits low absorption and a strong photochromic contrast in the spectral range from 1500 cm−1 to 1700 cm−1, making it suitable for dynamic infrared light control. This manuscript reports on infrared imaging experiments demonstrating the photochromic contrast in thiazolothiazole-embedded polymer, and thereby provides compelling evidence for its potential applications in dynamic infrared metasurfaces. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026